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Abstract:  The method of calculating the difference principal stresses and strains in linearly viscoelastic optically 

sensitive polymer materials by the given picture of interference fringes, which is changing in time, is offered. The 

main value obtained using direct and inverse Laplace transforms.  
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I.   INTRODUCTION 

The photoelastic method stands out among the methods used in solid mechanics [1]. The method is characterized by the 

possibility of identifying the distribution of mechanical stress and strains from a fringe pattern without the need to process 

experimental data. In the study of stress in solids by the method of dynamic photoelasticity [2], it is necessary to know the 

viscoelastic properties of optically sensitive model of polymers that are isotropic with respect to the elastic properties. 

Research of  mechanical stress  by isotropic-photoelastic  method for modeling the mechanical behavior associated with 

the solution of following methodological problems; the choice of material model, similar in its mechanical behavior to the 

materials of natural body, determination of stresses and strains in the model; transition to similar mechanical quantities in 

nature. 

II.   STATE OF THE PROBLEM AND MAIN EQUATIONS 

Usually when determining stress, they use linear dependence of the band order  т only on the strip through the optical 

stress coefficient Сδ, or only through deformation by optical strain coefficient Сε: 

  
);( 21   Cm

           
)( 21   Cm

                 (1)                               

 However, the known equation Filon-Jessop, simultaneously included stress and strain [4] defined by: 

  
)()( 2121     CCm

                                   (2)                                              

If the relation between stresses and strains are known, then constant coefficients in (1) and (2) are linked.  Note that the 

dynamic nature of the load in viscoelastic materials coefficients Сϭ and Сε  depend on strain rate. 

In the study of the behavior of linear viscoelastic properties piezo optic materials, Mindlin [3] used the model that 

contained four elements of solid deformable body. He has shown that for incompressible material for proportional 

changing load coefficients Сϭ and Сε   replaced by operators which depend on time. These polarization directions coincide 

with each other as well as deformation and stress.  

Note that in general  the main  axis of stresses  may not coincide with the axes of polarization under dynamic loading. The 

discrepancy between the axes can take a relatively small part of the total time of observation for quasi-static problems, i.e 
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only for viscoelastic transition. So, for engineering calculactions acceptable hypothesis of convergence of optical and 

mechanical axes of deformation over all time could be considered.  

Mechanical behavior of elastic isotropic homogeneous body can be described by two independent constants, which are 

bulk compression modulus К  and shear modulus G. Denote deviator components of stress ϭij  and strain εij  by ζij , іn еij 

respectively, we can write: 

  
;2 ijij Ge
            ijij K 3

                                                                  (3) 

For linear viscoelastic body isothermal relationship stress-strain conveniently interpreted through linear differential 

operators [] 
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Where an, bm, cr and ds  are determined experimentally. 

We apply the Laplace transform to equations (4) and (5) and zero initial conditions we get: 
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From equations  (6) and (7)  it follows that relationship between stresses and strains  has pseudo-elastic character in the 

plane transformation. To characterize the material it is necessary to define operators Gp  іn Kp. If these operators are 

known, then other characteristics could be obtained from the formulae:   
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where  Е  is Young's moduli , and  ν  is   Poisson's ratio. 

Consider the three main aspects of the approximation behavior of the material:  

а) not compressible material in terms of volume deformation and viscoelastic behavior with shear;    

b) Poisson's ratio is constant, but differs from 0.5 and is consistent with the data of [Mindlin], which showed that 

Poisson's ratio for epoxy polymer ED -16 Ma under pulsed load equal 0.35; 

c) Material is linear isotropic and homogeneous  

For the first case: 

  ν(р)=0,5;   К(р)= ;   Е(р)=3G(р)                                                           (10) 

For the second case: 

  ν(р)=ν0;               
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For the third case: 
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  The inverse Laplace transform  for (12) is associated with considerable mathematical difficulties. 

The first case is considered in detail in Williams work [7] so focus on the second case. 

In the main stresses and strains equation (4) has the form  
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                                     (13)                                          

For axial tensile take: ϭ1= ϭ;   ϭ2=0; ε1=ε;   ε2=- ν0 ε. Then (13) is written:  
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where
)()1(2)( 0 pGpE 

. 

If stress relaxation  ε(t)=ε0  at t>0, then P
p 0)(


 


. 

By definition module relaxation: 
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Equation (13) in experiments on stress relaxation can be written as: 
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Due to this, we  can write (15) as: 
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Similarly to (4) and (5)  the relationship between the optical and mechanical values can be written using linear differential 

operators, replacing constant coefficient Сϭ and Сε by corresponding operators: 
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                                           (17)                                                                        
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Applying the Laplace transform to equations (17) and (18) we obtain: 
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Apply (13) we get: 

  
)()(2)( pCpGpCs 

                                          (21)                                                                        

Consider the relationship (18), which is linking the relative optical path difference with the main difference deformations 

for different load cases. 
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In experiments on relaxation : 
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Since ε1=ε0 , ε2=-νε0, then 
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Knowing variable time of the picture intervention bands, we calculate the difference principal stress, making use of its 

superposition integral: 
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Accordingly, the main difference equation for deformation will look like: 
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So, to find the main difference stresses and strains need to know  

)(1 tC
pe




   і 

)(1 tC 

 . 

Using the result obtained in (5) the relations can be written in form 
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We apply inverse Laplace transform to these relations, we can find 
)(1 tC

pe




 and 

)(1 tC 

 . 

In problems of dynamic analysis of the stress state, when it is necessary to know the properties at very small values of 

time (10
-5

 – 10
-3 

с)  ) applicable of the principle of temperature-time analogy. In accordance with this principle, depending 

on the type of mechanical parameter Р is logarithm of time  lgt does not change with temperature, only shifting the curve 

along the axis lgt on the value of aТ,  which determines how many times the speed decreases relaxation process at 

temperature Т, according to its speed at a certain temperature Т0 

According to (5), the relation for coefficient аТ  has the form: 
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III.    CONCLUSION 

Thus, analysis of research results at different temperatures and strain rate, and  also use of the relation (28) make it 

possible to construct a complete dynamic spectrum. Having determined in experiments for relaxation at low temperatures 
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 and using temperature-temporal analogy and formulas (26) and (27), we can find 
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 at small intervals of the load. Using the inverse Laplace transform we obtain
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use the formulas (24)  and (25),  we can find the stress and strain in the studied model. 
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